Противоположные числа. Модуль числа

Противоположные числа – это числа, которые отличаются друг от друга только знаком. Выражение –а обозначает, что это число противоположное числу а.

Например, 7  и – 7;
                       41  и – 41  и т.д.

Число 0 противоположно самому себе!

То есть, для того, чтобы показать противоположность чисел в математике используют знак « – ».

Приписав знак « – » перед положительным числом 5, мы получим отрицательное число – 5.

Приписав знак « – » перед отрицательным числом – 5, мы получим противоположное ему положительное число 5, то есть – (–5) = 5.

– (–а) = а

На координатной прямой точки, у которых противоположные координаты, расположены на одинаковом расстоянии от начала отсчёта.

модуль

AO = OC
BO = OD

Модуль числа

Модуль числа – это расстояние (в единичных отрезках) от начала отсчёта до точки, которая изображает это число на координатной прямой.

модуль2

Точки А(– 4) и В (4) отдалены от начала отсчёта на 4 единичных отрезков, а числа – 4 и 4 имеют одинаковые модули, равные 4.

Модуль числа а обозначают | а |

Так как модуль – это расстояние, а расстояние не может быть отрицательным, то модуль числа не может быть отрицательным числом!!!

Модулем положительного числа и нуля является тоже самое число, а модулем отрицательного числа – противоположное ему число:
| а | = а, если а  ≥ 0  (если а – неотрицательное число)
| а | = – а, если а  <  0  (если а – отрицательное число)

Выводы

Свойства модуля числа:

  1. Модуль числа не может быть отрицательным. Модуль числа всегда или положительное число или равен 0.

| 4| = 4

| 0 | = 0

|– 4| = 4

  1. Противоположные числа имеют равные модули.

| – а | = | а | = а

Пример, | – 12 | = | 12 | = 12

Решение уравнений (примеры)
1.  – x = 7
вместо – x   и   7  напишем противоположные им числа, используя знак «–»
–(– x) = – 7
воспользуемся правилом, что – (–а) = а получим
x = – 7
2. – x = – 10
–(– x) = –(– 10)
x = 10
3. x = –(– 32)
x = 32
4. | x | = 4
x = 4 или x = – 4
Ответ: 4; – 4
5. | x | = 0
x = 0
Ответ: 0
6. | y | = – 8
модуль не может быть отрицательным числом, а значит данное уравнение не имеет решения
Ответ: нет корней
7. | – x | = 12
вспомним второе свойство модуля, что | – а | = | а | = а, тогда
| x | = 12
x = 12 или x = – 12
Ответ: 12; – 12
8. | y | – 2 = 12
подобные уравнения решаются как простые уравнения, только с учётом модуля
| y | = 12 + 2
| y | = 14
y = 14 или y = – 14
Ответ: 14; – 14
9.  10 – 2| x | = 4
2| x | = 10 – 4
2| x | = 6
| x | = 6 : 2
| x | = 3
x = 3 или x = – 3
Ответ: 3; – 3
То есть при решении уравнений, содержащих модуль мы получим три вида ответа:
два корня (если под знаком модуля положительное число), один корень (если под знаком модуля 0)
нет корней (если под знаком модуля отрицательное число).
Решение простейших неравенств, содержащих модуль

В 5 классе мы решали примеры с простейшими неравенствами. Линейные неравенства бывают строгие и нестрогие.
Строгие неравенства – это неравенства со знаками больше (>) или меньше (<).
x > a; x < a;
Нестрогие неравенства – это неравенства со знаками больше либо равно (≥) или меньше либо равно (≤).
x ≥ a; x ≤ a.

Примеры

1. Найдите все натуральные значения x, при которых является правильным неравенство x < 9

Решение.
Данное неравенство будет правильным при таких значениях x: 1; 2; 3; 4; 5; 6; 7; 8.
Ответ: х = {1; 2; 3; 4; 5; 6; 7; 8} – натуральные решения данного неравенства.

Примечание:
Число 0 не является решением этого неравества, так как 0 не является натуральным числом;
Число 9 не является решением этого неравества, так как данное неравенство строгое, то есть х строго меньше 9 и не может быть равным 9.

2. Какое наименьшее натуральное значение а удовлетворяет неравенство а > 12?

Решение.
Поскольку неравенство строгое, то число 13 является наименьшим натуральным значением а, которое удовлетворяет данному неравенству.
Ответ: 13

3. Какое наименьшее натуральное значение а удовлетворяет неравенство а ≥ 12?

Решение.
Поскольку неравенство нестрогое, то число 12 является наименьшим натуральным значением а, которое удовлетворяет данному неравенству.
Ответ: 12.

4. Найдите все натуральные значения x, при которых является правильным неравенство 2 < x < 9

Решение.
Неравенство двойное (читают как «х больше от 2, но меньше от 9»), строгое, поэтому 3; 4; 5; 6; 7; 8 – натуральные решения данного двойного неравенства.
Ответ: х = {3; 4; 5; 6; 7; 8}

5. Найдите все натуральные значения x, при которых является правильным неравенство 2 < x ≤ 9.

Решение.
3; 4; 5; 6; 7; 8; 9 – натуральные решения данного двойного неравенства.
Ответ: х = {3; 4; 5; 6; 7; 8; 9}

6. Найти все целые числа, которые удовлетворяют неравенству| x | < 5.

Решение.
| x | < 5 (читаем как «расстояние от начала отсчёта до точки изображающей х меньше 5»).
Неравенство | x | < 5 эквивалентно (может быть также записано) –5 < x < 5. Неравенство двойное, строгое, поэтому данное неравенство будет правильным при таких значениях x: –4; –3; –2; –1; 0; 1; 2; 3; 4.
Ответ: х = {–4; –3; –2; –1; 0; 1; 2; 3; 4}

7. Найти все целые числа, которые удовлетворяют неравенству| x | ≤ 5.

Решение.
Неравенство | x | ≤  5 эквивалентно –5 ≤  x ≤  5. Неравенство двойное, нестрогое, поэтому числа –5 и 5 войдут в множество чисел, при которых данное неравенство будет правильным. Таким образом, данное неравенство будет правильным при таких значениях x: –5; –4; –3; –2; –1; 0; 1; 2; 3; 4; 5.
Ответ: х = {–5; –4; –3; –2; –1;  0;  1;  2;  3;  4;  5}

8. Найти все целые числа, которые удовлетворяют неравенству | x | > 2 и обозначте их на координатной прямой.

Решение.
Неравенство | x | > 2 эквивалентно x < – 2 или x > 2. Обозначим на координатной прямой точки, координаты которых удовлетворяют данному неравенству

неравенства

Поскольку неравенство строгое, то числа – 2 и 2 не входят в множество целых чисел, при которых данное неравенство будет правильным. А на координатной прямой эти точки обозначаем в виде незакрашенной точки.

Ответ: х = {…–5; –4; –3;  3;  4;  5…}

9. Найти все целые числа, которые удовлетворяют неравенству | x | ≥ 2 и обозначте их на координатной прямой.

Решение.
Неравенство | x | ≥ 2 эквивалентно x ≤ – 2 или x ≥ 2. Обозначим на координатной прямой точки, координаты которых удовлетворяют данному неравенству

неравенства2

Поскольку неравенство нестрогое, то числа – 2 и 2 входят в множество целых чисел, при которых данное неравенство будет правильным. А на координатной прямой эти точки обозначаем в виде закрашенной точки.

Ответ: х = {…–5; –4; –3; –2;  2;  3;  4;  5…}

10. Найти все целые числа, которые удовлетворяют неравенству 1 < | x | ≤ 3 и обозначте их на координатной прямой.

Решение.
Рассмотрим сначала левую часть неравенства. Она означает, что расстояние от начала отсчёта до точек меньше 1. Рассмотрим правую часть неравенства: расстояние от начала отсчёта до этих же точек меньше или равно 3.
Построим эти точки на координатной прямой:

неравенства3

1 и – 1 не входят в множество целых чисел, которые удовлетворяют неравенству, потому что неравенство строгое.
3 и – 3 входят в множество целых чисел, которые удовлетворяют неравенству, потому что неравенство нестрогое.

Ответ: х = {–3; –2;  2;  3}